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A B S T R A C T

Currently, the price per consumption of most district heating consumers is static, providing no incentive for 
consumers to change their heating behavior. A dynamic pricing structure can encourage consumers to adjust 
their heat demand according to supply conditions. This paper presents a methodology for designing day-ahead 
dynamic price profiles for district heating to encourage buildings for certain demand response purposes effec-
tively. This method relies on a method to characterize the energy flexibility of buildings and an inverse opti-
mization to obtain the optimal dynamic price profile. The methodology is tested on a residential neighborhood as 
a case study, using a virtual experiment that includes buildings and a district heating network. Results show that 
the designed dynamic price could encourage consumers to change their demand profile to match a pre-defined 
load-shifting profile with 16.6 % MAPE. Accordingly, the peak load was reduced by 84.4 % as a result of 
responding to a tailored price profile, considering the flexibility potential of the neighborhood. In addition, heat 
costs in the neighborhood were reduced by 46.6 % compared to the flat price. The findings of this paper highlight 
the benefits of the dynamic heat price for district heating operators and consumers over the flat price.

1. Introduction

According to the International Energy Agency, heating and cooling 
account for 50 % of the world’s energy consumption, contributing to 40 
% of global carbon dioxide emissions [1]. Natural gas, coal, wood, etc., 
are burnt daily to meet buildings’ heating demands. With population 
growth, political conflicts, and problems associated with climate 
change, it is crucial to rely on renewable energy and other clean energy 
sources [2]. District heating can optimally utilize locally available heat 
sources and waste heat [3], which can be dissipated heat from industrial 
processes, incineration of household waste, agricultural residues, and 
heat from processes in Combined Heat and Power plants (CHP) [4]. 
District heating is identified to be a flexible resource for the electricity 
grid, using the thermal storage of the network [5]. According to Danish 
Energy Agency statistics, district heating was the main heating source of 
66 % of residential dwellings in Denmark in 2022 [6]. Decarbonizing the 
heating sector has been the goal of many cities [7]. For example, 
Sønderborg has set a goal to decarbonize its heating sector by 2035 [8].

During peak demand periods, clean district heating plants (e.g., 
waste incineration plants, waste heat from data centers, renewable 

energy) may be insufficient to cover the demand and backup fossil-based 
boilers are usually used [9]. There are generally three solutions to pre-
vent using these boilers: 1) increasing penetration of clean energy 
sources in district heating, 2) adding large thermal storage units to store 
heat for peak demand periods, and 3) using demand response and load 
shifting on the consumer side. Among these solutions, demand response 
is proven to be a successful strategy with lower investment costs [10]. 
Buildings can store heat for up to many hours due to the large thermal 
mass. Indoor setpoint control in buildings is recognized as a short-term 
storage solution, which can benefit district heating systems by solving 
local network congestion and peak demand challenges by reducing 
peaks [11]. District heating companies can send price signals to heat 
consumers to indirectly control indoor setpoints. A challenge is to esti-
mate how buildings would react to different price signals, just as 
mentioned in Ref. [12]. The first studies on this topic started by char-
acterizing energy flexibility in a static form or pre-specified profiles [13] 
and introduced the term Flexibility Function, which made a linear link 
between price and change in demand [14]. However, the linearity 
assumption hindered the application of the flexibility function and it 
was further developed as a nonlinear flexibility function [15].
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Many studies identified demand response as a successful and prom-
ising solution to overcome mismatches between demand and supply in 
district heating [16]. One effective way of unlocking demand response 
in district heating is shifting from a flat price to a dynamic price. Dy-
namic price can indirectly control heat load of a building by incentiv-
izing consumers to change their heating behavior and gain economic 
benefits from it [17]. Additionally, in Ref. [18], authors comprehen-
sively define concepts of next-generation district heating systems, in 
which they propose the change from the prevailing flat price to a varying 
price as one of the critical elements for decarbonization. To the best of 
the authors’ knowledge, there are a limited number of papers dedicated 
to analyzing dynamic prices in district heating systems for demand 
response purposes, with very few papers giving methods for designing 
dynamic heat prices. Li et al. [19] created an Elman Neural Networks 
(ENN) model for predicting heat demands and calculated the price based 
on that, focusing on the expense of heat customers under different price 
models: seasonal price model, subscription price model, and real price 
models. They concluded that by using the dynamic price schemes, dis-
trict heating can obtain a lower overall cost compared with current price 
schemes. Hua et al. [20] implemented an integrated demand response 
approach consisting of an optimization layer and a control layer for an 
education building. They calculated the true cost of producing heat by 
the air source heat pump using electricity prices and other influencing 
factors and took that as dynamic heat price. Their results show a 9 % 
reduction in energy consumption and 13 % lower heat costs. Bai et al. 
[21] formulated the heating market as a Stackelberg game with a 
bi-level structure, the upper-level problem being the heat provider 
aiming to find the dynamic heat price to maximize the net profit, and the 
lower level being consumers to find the optimum heat demand profile to 
minimize their costs. They applied the approach to a groundwater-based 
low-temperature district heating system, comprising one heat pump as 
the heat provider, a thermal storage, and three commercial buildings as 
consumers. Their study demonstrated that dynamic heat price can be a 
successful solution to utilize the flexibility of heat demand.

As [22] suggests, new tariffs and business models are required for 
district heating operators to incentivize consumers for demand response 
purposes. Shifting from a flat heat price to a dynamic heat price can be a 
solution for the widespread activation of demand response. Many 
recognize the advantages of dynamic price for district heating, yet they 
lack implementation methodologies. Marginal heat production cost has 
been widely used in the literature as dynamic heat price for control 
purposes of buildings and neighborhoods. For example, Foteinaki et al. 
[23] took the marginal heat production cost of a district heating com-
pany as a dynamic heat price to trigger demand response actions in a 
multifamily apartment and evaluate its energy flexibility potential. Cai 
et al. [24] also used the marginal cost of the district heating network in 
Copenhagen as a dynamic heat price for optimal energy scheduling of 
the network. Dominković et al. [25] analyzed waste heat utilization in 
district heating networks of Nordic countries, using a dynamic heat price 
based on marginal heat production cost. Although district heating 
pricing based on marginal cost benefits operators and consumers, it 
cannot act as a proper demand response solution as it fails to successfully 
motivate consumers for load shifting since it does not consider consumer 
flexibility [19]. Therefore, a better pricing approach is required that 
considers consumer flexibility to maximize demand response [26]. 
Kaiser et al. [27] presented a framework for designing dynamic prices 
for reducing power peaks in low-voltage electricity grids as part of a 
pilot project called OrtsNetz. They used reinforcement learning (RL) to 
determine the optimal price signals that minimize peak power con-
sumption while considering customer preferences and comfort. A 
bi-level optimization is solved to obtain a real-time price every 15 min. 
Although providing valuable insights, the approach lacks the potential 
for scalability due to its complexity. In addition, the approach focuses on 
reinforcement learning only and does not include other types of con-
trollers. A more scalable approach for wide implementation of dynamic 
price is required that can handle different types of controllers.

Based on the literature review, several key research gaps were 
identified. These include the lack of a method to assess the flexibility 
potential and price responsiveness of district heating consumers, the 
limited exploration of dynamic pricing as a tool for activating demand 
response in district heating, and the need for a scalable approach to 
designing price signals for demand response purposes. To address these 
gaps, this paper proposes a novel methodology for designing dynamic 
price signals that leverage demand flexibility. A stochastic nonlinear 
flexibility function developed by Junker et al. [12] is used to charac-
terize the energy flexibility of buildings. Unlike existing methods in the 
literature, which rely on case-specific and complex approaches to 
determine dynamic prices, this method is more generalizable and 
computationally efficient, making it easier to scale. Additionally, it can 
accommodate various types of controllers and is not restricted to a 
specific consumer type. While the marginal heat production cost method 
considers only supply availability, this approach also accounts for con-
sumer flexibility, enhancing demand response participation. When 
fitted, the flexibility function can predict the building’s reaction to price, 
which is then used in an inverse optimization problem to obtain the 
optimum day-ahead price profile that aims to match the expected de-
mand of consumers with a desired profile. The method is tested on a 
virtual testbed of a residential neighborhood with 19 buildings. Even-
tually, critical aspects of this method are discussed. This approach stands 
out as it is largely scalable, takes into account demand flexibility and 
consumer behavior, and can handle different types of controllers. 
Accordingly, dynamic price is also analyzed in this study as a new tariff 
system for district heating, and its potential for demand response is 
investigated.

The paper is organized into six sections. In Section 1, an introduction 
to the topic was given, highlighting the importance of the topic, pro-
posed approach, ongoing studies, and existing literature. In Section 2, 
the methodology is explained including the equations governing the 
flexibility function and the optimization problem. In Section 3, the case 
study used for the analysis and the detailed simulation model (white-box 
model) are described. Section 4 presents the validation results and 
simulation results. Key points about this study are discussed in Section 5, 
mentioning the limitations and future studies. Eventually, Section 6
concludes the paper.

2. Methodology: using flexibility function to design dynamic 
heat prices

2.1. Energy flexibility model

Buildings can shift the use of a certain amount of energy in time 
responding to external signal, e.g., price signal, motivation tariff, or 
carbon intensity of the network [28]. A dynamic price should reflect the 
actual production costs and, at the same time, motivate consumers to 
shift their loads accordingly [19]. To design the price signal, system 
behavior, and energy flexibility of buildings should be first identified. 
For this, a set of nonlinear stochastic differential equations describing 
the flexibility function developed by Junker is used [29]. It should be 
noted that systems must be price-responsive to characterize their flexi-
bility using this method. This means that the buildings should react to 
the price to some extent (i.e., naturally increase in consumption when 
the price is low, and vice versa). The model applies concepts of a 
generalized battery thinking such as a state-of-charge, capacity, etc. to 
the energy flexible system. The following equation describes the 
state-of-charge: 

dXt =
1
C
(Dt − Bt − ε(Xt − τ))dt + Xt(1 − Xt)σXdWt (1) 

where Xt is the state of charge of the system with a value between 0 and 
1, where 0 indicates that the system is in an empty state and has the 
highest capacity to be charged, and a value of 1 means that the system is 
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fully charged, and no further charging is possible. The parameter C is the 
amount of flexible energy that can be shifted, Dt shows the expected 
demand from the system when a specific price is given and Bt corre-
sponds to the baseline demand, which is the demand of the system when 
there is a fixed price. Wt is Wiener process, σX is the intensity of the 
system noise, and τ is the balancing coefficient. The balancing coeffi-
cient denotes the behavior of the system in pushing the state from 
boundary states to the baseline state. A low balancing coefficient cor-
responds to a system that is rapidly getting pushed to the baseline state 
by time, while a high balancing coefficient indicates a system that can 
stay long in the boundary states. In this application, τ value is found to 
be at 0.5 based on the realization of system behavior in simulations. In 
the context of buildings, state of charge of the system (Xt) corresponds to 
the energy level of the building where a value of 0 means that the 
building is at the lowest possible state just before experiencing thermal 
discomfort and a value of 1 corresponds to a state where the building is 
at the highest energy level, and no more increase in the energy level of 
the building is possible. Parameter C is the total capacity of flexible 
energy of the building, which depends on the thermal properties of the 
building and indoor setpoint limits. A higher setpoint limit range will 
result in a higher flexible energy (C). Baseline demand (Bt) is the sys-
tem’s demand if the controller is price-ignorant or if a fixed price is given 
to the system. Dt is the expected demand of the system in the presence of 
a dynamic price. This is the parameter that the flexibility function would 
predict, given the baseline demand, predefined price schedule, and 
trained parameters of the flexibility function. As a default, the state 
equation considers that when the state of the system deviates due to 
changes in the price, it tends to get back to the baseline state after some 
time. However, in the case of heating use in buildings, this assumption 
does not hold, and it is assumed that when the price is the lowest, 
consumer keeps the thermostat at a high setpoint no matter for how 
long, and vice versa. To address this, ε(Xt − τ) term is added to the state 
equation, where τ is assumed to be an average state which is set to 0.5, 
and ε is a parameter that needs to be tuned to find how fast the building 
would move towards the baseline over time. Without this term, the 
prediction of the flexibility function would not be accurate as it is 
considered in the state equation that the building can only stay at low 
and high setpoints for a short period of time.

The model assumes that any change from the baseline demand is a 
function of the state of charge of the system (shown by f(x)) or changes 
in the price applied to the system (shown by g(x)). By defining these two 
functions and normalizing them to be between − 1 and +1, the following 
equation would be derived: 

δt = l(f(Xt ; α)+ g(ut ; β); k) (2) 

where α and β are function tuning parameters k is called energy flexi-
bility eagerness, indicating the speed of demand changes, ut is the price 
signal at time t, and l(x; k) is a scaled logistic function. The logistic 
function together with k indicate how aggressively the energy flexibility 
is used. Using the dynamical equation for the state-of-charge (Eq. (1)), 
the expected demand is calculated as: 

Dt =Bt + δtΔ(L(δt >0)(1 − Bt)+ L(δt <0)Bt) (3) 

L(x>0)=
{

1 x > 0
0 else (4) 

where Δ is the proportion of flexible demand, which indicates the 
amount of flexible demand in the baseline demand and L is the indica-
tion function, shown in Eq. (4). Eventually, the relationship between the 
measured demand (Y) and expected demand (D) is as follows: 

Yt =Dt + σYεt (5) 

in which Yt is the measured demand, e.g., the actual energy demand of a 
building, σY is random error and εt ∼ N

(
0,12). Ideally, expected demand 

(D) should match measured demand (Y). For more information on the 
equations and the model parameters, readers are referred to Ref. [29]. 
For simplicity, the relationship between price and demand using flexi-
bility function (FF) can be expressed as follows: 

Dt = FF(ut ,Bt ; θ) (6) 

where T is the prediction horizon of the flexibility function, and θ con-
tains all the parameters of the flexibility function. Using observed time 
series of prices and demand, these parameters can be estimated using 
methodologies for estimating parameters in discretely and partially 
observed stochastic differential equations as for instance described in 
Ref. [30].

2.2. Dynamic price design

Using Eq. (6), the response of a price-responsive system to a price 
signal can be estimated and evaluated under different circumstances. An 
optimization algorithm can be used to find the optimum price to mini-
mize the difference between the system response and a desired response, 
commonly known as an inverse-optimization. The workflow for 
designing the optimum heat price is illustrated in Fig. 1.

Price profiles (u) generated by the optimization algorithm are eval-
uated by the trained flexibility function. Flexibility function requires a 
baseline demand (B) as an input which is the prediction of system 
behavior without dynamic price. The error between the expected de-
mand (D) and target demand (Ptarget) is used to define reference type 
controllers for finding the optimum price at any given point in time, 
which is the cost function to be iteratively minimized. The optimization 
equations are as follows: 

Minimize
u

∑T

t=1
|D(t) − Ptarget(t)

⃒
⃒ (7) 

Subject to: 

umin ≤ u(t) ≤ umax ∀t (8) 

D= FF(u | u∈{1,2,…,T},B|B∈{1,2,…,T}, θ) (9) 

where T is the time horizon, and umin and umax are minimum and 
maximum allowed prices at each time unit.

The aim is to design a dynamic heat price to minimize the difference 
between the measured demand and the target demand. The target de-
mand is the desired demand profile of the district heating operator, 
which the operator designs for economic and environmental purposes, 
such as peak load shaving, which can prevent oversized equipment in 

Fig. 1. Workflow for finding optimum price.
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the design and improve the integration of heat recovery units and 
renewable energy sources. Identifying the target demand requires 
knowledge from the plants and is usually an economic optimization 
problem, which is out of the scope of this paper. A similar setup for 
power systems is studied in Ref. [31]. Therefore, a peak load shifting 
profile is considered as the target demand for the heat price signal 
design. For the optimization, Genetic Algorithm is used as a heuristic 
optimization method [32]. The parameters of the algorithm are set after 
multiple iterations of simulations. Accordingly, maximum iteration is set 
to 1000, population size is 200, and mutation and crossover percentages 
are 30 % and 85 %.

To find the optimum heat price, a winter day (i.e. 20th January 
2022) is selected for the analysis. The target demand is a peak load 
shaving profile between 5:00–9:00 and 16:00–20:00. A short pre- 
charging period is considered before the peak periods, and the rest is 
the same as the baseline demand. Finally, to assess the effect of using 
dynamic heat price and demand response, two cases are identified: 
price-responsive (reacting to the dynamic heat price) and price-ignorant 
(baseline).

2.3. Peak load reduction

To quantify the peak load reduction potential of using dynamic price, 
the following equation is used: 

Peak load reduction (%)=
YDR − BDR

BDR
× 100 (10) 

where YDR and BDR are the measured demand and baseline demand 
during a peak load reduction period.

2.4. Model accuracy

Before using the flexibility function, it should be tested and validated 
using measurement data. The KPIs used for validation are Root Mean 
Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) 
methods, commonly used for evaluating forecast and model accuracy. 
These metrics are calculated as: 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Yi − Di)

2

n

√
√
√
√
√

(11) 

MAPE=
100
n

∑n

i=1

Yi − Di

Yi
(12) 

where n is the number of data points and Yi and Di are the measurement 
data and model output, respectively.

3. Case study

The above methodology is applied to a case study to demonstrate the 
design process of dynamic heat prices and their impact. The case study is 
a neighborhood consisting of 19 multi-family residential blocks with 
432 apartments in total, located in Sønderborg, Denmark. The buildings 
were built around 1970 and renovated multiple times. The buildings 
have similar floor plans and differ only in orientation, floor area, and 
number of floors (2 or 3). The buildings are part of the ARV project’s 
Danish demonstration site [33]. An aerial view of the case study and a 
photo of one of the buildings are shown in Fig. 2. There are 9 substations 
distributing heat to 19 building blocks. Each substation is labeled with 
its corresponding block in the same color, e.g., the substation K9 pro-
vides heat to the four buildings marked in yellow.

3.1. Heating system

Sønderborg Varme is the local district heating company providing 
heat to the case study neighborhood [34]. On the space heating side, 
district heating supply water is mixed by the return water of the radia-
tors (by controlling the mixing ratio) to provide the proper forward 
temperature for the radiators. A Weather Compensation Curve (WCC) 
determines the appropriate forward temperature. The radiators are 
equipped with Thermostatic Radiator Valves (TRV), automatically 
adjustable valves that maintain indoor temperature at a specific range. 
The heating controllers are controlling the indoor temperature by 
changing TRV setpoints. Indoor temperature is assumed to change be-
tween 18 ◦C and 26 ◦C according to the price. In this study, the indoor 
setpoint is determined by the dynamic heat price using a fuzzy system. 
By using the fuzzy controller, a smoother relationship between the price 
and setpoint temperature can be established, making it easier for the 
flexibility function to find the related parameters. The utilized fuzzy 
system is a simple Mamdani function with price as the input and indoor 
setpoint temperature as the output. Five trapezoid and Gaussian mem-
bership functions are determined for the input and the output based on 
user knowledge. Fig. 3 shows the relationship between heat price, in-
door setpoints, and forward temperature settings.

3.2. Data collection

Data from multiple sources were collected to complete the model 
development. 

• Substation heat consumption

Daily substation heat consumption measurements are collected by 
heat meters in the substations, which consist of space heating, domestic 
hot water consumption, and circulation losses. These measurements are 
used for model validation. 

Fig. 2. Left - Arial view of the neighborhood and district heating substations in Sønderborg. Colors represent individual substations. Right - Photo taken outside one 
of the buildings.
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• Weather data

The weather data consists of hourly ambient temperature values, 
relative humidity, wind speed and direction, and solar irradiation, 
measured in the Sønderborg airport weather station. The data shows 
that Sønderborg is a heating-dominated city with ambient temperatures 
between − 4 ◦C and 29.3 ◦C. Solar irradiation intensity reaches 889.4 W/ 
m2 in June but is very low in the winter season. Wind speed has high 
variations, rising up to 17 m/s. The data is used both in the validation 
phase and simulation phase. 

• Building properties

Since the exact information on the building construction elements 
was unavailable, valid datasets were used, including the Danish Building 
and Housing Register (BBR) [35], the Danish Building Standard (DS/EN 
15251) [36] and the TABULA project [37] to create building models. 
The building components used for modelling are listed in Table 1. The 
air infiltration rate is set as 4 l/s.m2 according to Ref. [38].

3.3. Characterizing flexibility function for the neighborhood

As the implementation cannot be conducted physically in the case 
study, we have built a virtual platform (a white-box model) as the digital 
twin of the neighborhood.

3.3.1. White-box model as a virtual testbed
Modelica is used to create the neighborhood model using the Dymola 

interface [39]. The model is composed of a DH plant, substations, and 
buildings. At the plant level, hot water with the desired temperature and 
pressure is produced and dispatched to the network. The high-pressure 
hot water then enters each substation for heating purposes. Here, the 
water temperature and pressure are reduced by heat exchangers and 
mixing shunts. After this, hot water with desired conditions is forwarded 
to radiators and domestic hot water tanks. An illustration of the district 
model is shown in Fig. 4.

The "MixedAir" component from Modelica Buildings Library is used 
to create the building thermal models. To model the dynamic behavior 
of Thermostatic Radiator Valves (TRV), a modified version of the 
"TwoWayTRV" component from IDEAS library is used [40]. This 
component models the position of the valve using a smooth Heaviside 
function. 

• Assumptions and simplifications

Since white-box models intend to represent the real case with high 
accuracy, they usually require detailed information. In this context, 
parameters such as radiator sizes, furniture thermal mass, occupancy 
presence, clogs in heating systems, window curtain positions are chal-
lenging to collect, especially for a district-level study. Therefore, some 
simplifications need to be made.

Thermal zones: Each floor is assumed to be a single thermal zone 
with an equivalent hydronic radiator for the whole floor. Therefore, a 3- 
floor building would be modeled by connecting three thermal zone 
models in Dymola.

Heat loss: In the case study neighborhood, the distance between the 
blocks is relatively small, so the heat loss to the soil would be negligible. 
However, heat loss from the substation in the basement increases the 
basement’s temperature. In the model, this heat loss is modeled as a 
constant heat source in the basement.

Thermal delay: District heating networks are usually larger than just 
a small neighborhood and cover larger areas. Since this study is limited 
to analyzing only a small part of the whole district heating network, 
thermal delay within the pipes was neglected due to small distances.

DH supply temperature: As the focus of the study is on the consumer 
side the district heating supply temperature is assumed to be fixed.

3.3.2. Virtual experiment workflow
We implement the method for designing dynamic prices (Section 

2.2) on the white-box model as the virtual experimental platform, so the 
measured demand (Y) would be the model output. To characterize the 
flexibility function, datasets of price (u), baseline demand (B) and 
measured demand (Y) over a long enough period (i.e. a period that 

Fig. 3. (a) Determined indoor setpoint based on heating price, (b) SH supply temperature as a function of indoor setpoint and ambient temperature.

Table 1 
Components used in creating building models.

Component Materials (thickness)

Roof Roof tiles (59 mm)
Insulation (300 mm)
Hollow core concrete (270 mm)

Exterior wall Brick (108 mm)
Insulation (375 mm)
Aerated concrete (100 mm)

Floor/ceiling Concrete (220 mm)
Insulation (93 mm)
Concrete (80 mm)
Oak planks (14 mm)

Ground floor Insulation (350 mm)
Concrete (120 mm)

Windows Clear double glazing with air
Internal wall Concrete (200 mm)
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includes different varieties of input values) are required. The workflow 
for building such a dataset is shown in Fig. 5.

The white-box model of the neighborhood is first exported as a 
Functional-MockUp-Unit (FMU) and then sent to Simulink to integrate 
with control systems. The Fuzzy controller is modeled in Simulink and 
connected to the FMU. The controller receives heat price (u) and re-
sponds accordingly and sends the response (i.e. radiator control signal) 
to the FMU block, which then gives the output, the measured demand 
(Y), which is the reaction of the neighborhood to the price. In reality, 
measured demand (Y) is the measured demand of neighborhood, but 
here, since there is no physical implementation available, the white-box 
model output represents measurement demands. To calculate the 
baseline, the controller block is removed, and the output of the FMU 
becomes the baseline heat consumption in the absence of price- 
responsive controllers.

4. Results

4.1. Validation of white-box model

For a well-tuned model, the error between the simulation results and 

real measurements should be within an acceptable range. To assess the 
model accuracy, model validation is performed in January 2022 and the 
results are shown in Fig. 6.

The validation was performed for six substations out of nine since the 
collected data was available only for six substations during this period. 
The simulation is performed using Dymola, with a timestep of 15 min 
and an error tolerance of 0.001 for convergence between intervals. Re-
sults show a Mean Absolute Percentage Error (MAPE) value of 4.8 %– 
8.9 % for the substations.

4.2. Flexibility function of the case study neighborhood

The accuracy of the flexibility function model is examined using 
measured demand. To fit the flexibility function to the neighborhood, a 
training dataset is required, as mentioned in 3.4. The dataset should 
contain baseline demand (B), dynamic heat price (u) and measured 
demand (Y) for a period, as shown in Fig. 5. Estimating the parameters 
of the flexibility function (i.e. θ in Eq. (6)) requires solving an optimi-
zation problem to retrieve a model that can provide accurate predictions 
of system response to price at different conditions. A training dataset 
containing a baseline demand, price signal, and the response of the 
energy flexible system is required to obtain flexibility function param-
eters. Accordingly, the optimization problem is solved to find the pa-
rameters that can best describe the energy flexibility model and system 
behavior. More information regarding the optimization process is given 
in Ref. [12]. An iterative approach is used to fit the model to the data and 
find the flexibility function parameters. Accordingly, heat meter mea-
surements of February 2022 are used as the baseline demand (B) in the 
training dataset. Since the heat price is currently flat in Denmark, the 
dynamic electricity price from the Nordpool Day-ahead market for DK1 
was taken as the dynamic heat price (u) [41]. The model takes the dy-
namic price and calculates the measured demand accordingly (Y). The 
dataset is shown in Fig. 7.

Indoor temperatures are found to follow the setpoint accurately. 
When the setpoint drops to the lowest value, e.g., the highlighted area in 
the figure between days 21 and 23, indoor temperature requires more 
time to reach the setpoint due to the thermal intertia of the buildings. 
This indicates that the heating system can be turned off in high-price 
periods with the indoor temperature staying within the temperature 
comfort zone. In addition, the heat demand profile shows a good de-
pendency on the heat price. For example, drops in the prices on days 18 
and 20 are followed by spikes in demand in the same periods. To 

Fig. 4. White-box model of the neighborhood created using Dymola.

Fig. 5. Workflow for model exchange and controller implementation.
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calculate the baseline demand (B), the same fixed TRV settings of 21 ◦C 
are used instead of the fuzzy controllers, and simulation is repeated in 
the same period. Eventually, this dataset is used to train the flexibility 
function. Fig. 8 compares the flexibility function model output (D) 
together with the result of the white-box model (Y) given the random 
heat price (u), for one week.

The prediction demand by flexibility function (D) closely matches 
the measured demand (Y) with an MAPE of 6.7 % and RMSE equal to 
249.8 kW. The fitted flexibility function parameters are given in Table 2. 
For information about the parameters can be found in Ref. [14].

Δ value of 1 means that the function assumes all the demand in this 
neighborhood is flexible. α and β are parameters of the f and g functions, 

Fig. 6. Model validation results for six substations, conducted in January 2022.

Fig. 7. Dataset used for training the flexibility function. Top indoor temperature and setpoints of one of the buildings, middle Demand of the neighborhood, and 
bottom dynamic price, taken from Nordpool DK1 day-ahead electricity price.
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which constitutes essential parts of the flexibility function as described 
in Eq (2). Readers are recommended to refer to Ref. [14] for further 
details on the flexibility function parameters.

4.3. Optimum heat price

In this section, the results of using the trained flexibility function for 
designing the optimum price for the neighborhood, using the method 
shown in Section 2.2 are presented.

Fig. 9 shows that the price is high in the peak periods and low in the 
pre-charging hours. The magnitudes of the dynamic heat price depend 
on the flexibility of buildings and the target demand value. If buildings 
are not flexible enough, the resulting dynamic heat price is expected to 
have more extreme prices. The fluctuations in measured demand (Y), for 
example at 15:00 is due to controllers in the model reacting to sudden 

changes in thermostat settings. Using the dynamic heat price, neigh-
borhood demand is matched with the target demand with an MAPE 
value of 16.6 %. The measured demand (Y) profile shows a notable peak 
reduction during morning peaks (5:00–9:00) and evening peaks 
(16:00–20:00), due to increased prices. Accordingly, the average peak 
load reduction values during morning and evening peak periods are 
84.4 % and 81.7 %, respectively. Table 3 shows the total heating con-
sumption and the heating costs for the two cases, and Fig. 10 shows the 
indoor temperatures and the setpoint.

The price-responsive system provided 46.6 % savings in the heating 
cost for the neighborhood. Still, the thermal comfort state would be 
satisfied since the controllers are bound to be between the thermal 
comfort limits (18 ◦C–26 ◦C according to the Danish building standard 
[42]).

The figure below shows the average indoor temperature of all 
buildings in the neighborhood for both price-responsive and price- 
ignorant cases.

The red dashed line shows the variable setpoint determined by the 
fuzzy controller, given the optimum dynamic price. The indoor tem-
perature in the price-responsive system follows the setpoint by auto-
matically adjusting TRVs. The slight bias between the setpoint and 
indoor temperature is due to the 0.5 ◦C dead band of the TRVs, which 
means that the TRVs keep the indoor temperature within 0.5 ◦C of the 
setpoint. The indoor temperature does not reach 18 ◦C mainly due to the 
high thermal inertia of the buildings. The indoor temperature for the 
price-ignorant case is relatively constant throughout the period due to a 
fixed setpoint of 21 ◦C. The average indoor temperatures for the price- 
ignorant and price-responsive cases are 21.3 ◦C and 20.6 ◦C, 
respectively.

5. Discussion

In this study, the methodology of designing dynamic heat price is 
tested on a virtual testbed of a neighborhood. Implementing and testing 
dynamic heat price in real-world district heating systems is challenging 
due to the complexity of factors involved and uncontrolled study 

Fig. 8. Expected demand (D) profile of the neighborhood, compared with 
measured demand (Y), applying variable price (u) in one week.

Table 2 
Parameter estimates of the flexibility function model for the neighborhood.

Parameters values Description

C 20 Total amount of energy available for flexible use
Δ 1 Proportion of flexibility demand
k 4.697485 Energy flexibility eagerness
ε 0.674467 State deviation speed
α1 0.5 Function f parameters
α2 0.016792
α3 0.756731
α4 0.226477
β1 0.319242 Function g parameters
β2 0.122078
β3 0.070485
β4 0.108339
β5 0.160450
β6 0.219406
β7 0

Fig. 9. The optimum heat price for the neighborhood.

Fig. 10. Average indoor temperature of the buildings for both price-responsive 
and price-ignorant cases.

Table 3 
Heating consumption and the total heating cost for the price-ignorant and price- 
responsive cases.

Heating consumption (MWh) Heating cost (DKK)

Price-ignorant 27.6 27,667
Price-responsive 20.4 14,772
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environment. For example, in practice, heat consumers might react 
uniquely to dynamic heat prices, making predictions challenging. 
Additionally, the current infrastructure is not equipped for broadcasting 
the prices, control, monitoring, etc. Therefore, we conducted the study 
on a representative, detailed model (white-box model) of the neigh-
borhood. This study aimed to reveal the potential of buildings in a 
neighborhood for demand response in ideal situations. Therefore, the 
indoor temperature range was set to 18 ◦C–26 ◦C. In reality, the accepted 
temperature bound might be much smaller. Additionally, the controller 
type chosen here perfectly complies with dynamic prices. Most buildings 
do not have smart thermostats and will not accept such direct controls. 
Although these assumptions deviate from reality, they provided valu-
able insights into the maximum potential of buildings for demand 
response and the benefits of dynamic price.

The role of climate in the proposed method is to determine the 
baseline demand value. The highest influencing parameter is the 
controller type, which can be a rule-based control, manual control of 
occupants, or automatic controller type. In reality, full automation may 
not be feasible, and end-users might have a notable influence on re-
actions. Although this would add uncertainty and stochasticity to the 
data, the stochastic flexibility function can still fit a reasonable model if 
enough data is given. Still, end-user willingness to participate in demand 
response events can change from time to time and can create errors in 
determining the optimum price. An adaptive version of the flexibility 
function can be a solution for this, where the parameters of the flexibility 
function update accordingly [43]. A follow-up study is required to 
consider different consumer types with different controllers better to 
understand the role of occupant behavior in this. This study considered a 
specific case study with a mild climate to test the proposed methodol-
ogy. However, this does not reduce the generalizability of the method. 
The method can be applied to any energy-flexible system with any sort 
of energy demand, including cooling and electricity. In general, to apply 
the method to any energy-flexible system, the following general steps 
should be taken. 

1) Baseline model: A model for estimating baseline demand should be 
established, which can be a dynamic model, a statistical model based 
on historical data, etc.

2) System response to price: The actual response of the system to 
dynamic price in different conditions should be measured. This in-
formation, together with the baseline demand, would be used to fit 
the flexibility function and estimate the parameters.

3) Target demand: A target demand should be available to design 
dynamic prices accordingly, which can be a load-shifting profile, 
peak-shaving profile, or maximizing self-consumption.

Domestic Hot Water (DHW), the main contributor to district heating 
peaks, is not included in this study. However, experiences in practice 
show that the flexibility potential of DHW is limited due to the limited 
size of the DHW tank at the substation; thus, it is much smaller than the 
flexibility the heating system can offer [44].

Target demand is essential as the price is calculated based on that. 
District heating operators determine the target demand, which can be 
derived from internal optimization of the plant productions. It can be 
prepared to shape the network’s total demand for multiple purposes, e. 
g., preventing peaks, reducing return water temperature, promoting the 
economic benefit of plants, and maximizing self-consumption. Focusing 
on how to find the target demand was out of the scope of this paper, but 
it is an essential factor for district heating operators. Basically, if the aim 
is to minimize production costs, the target demand profile would look 
like the reverse of the marginal heat production cost profile. But, if the 
aim is peak load shifting, environmental benefits, or solving network 
congestion, the target demand would be different than the marginal heat 
production cost.

The dynamic heat price used in this study is based on obtaining a 
fixed day-ahead price profile and sending it to the users. This makes the 

approach sensitive to the baseline prediction when calculating the price 
profile. Another approach is to apply an updating scheme as real-time 
pricing, where the optimum price is first determined, and real-time 
updates are conducted based on measured reactions of users and 
weather conditions. Future studies can compare the methods and focus 
on the uncertainty of baseline demand predictions.

6. Conclusion

This study proposed a methodology for designing dynamic heat 
prices for demand response purposes, considering demand flexibility 
and consumer reaction. The approach relies on using a stochastic 
nonlinear flexibility function to characterize the energy flexibility of 
buildings in response to the dynamic price. An inverse optimization 
problem is used to determine the optimal day-ahead price profile that 
balances consumer demand with the district heating operator’s target 
demand. The methodology was applied to the case study of a neigh-
borhood of 19 residential apartment blocks in Sønderborg, Denmark. 
Results for the neighborhood show that applying the designed dynamic 
heat price could match demand and supply with a MAPE of 16.6 %, and 
the morning and evening peak loads were reduced by up to 84.4 %. In 
addition, consumer heat costs were reduced by 46.6 % by changing 
thermostat settings using a fuzzy controller.

This paper builds a good foundation for district heating operators 
and consumers to understand the potential benefits of shifting from the 
current flat price mechanism to a dynamic price. More studies, however, 
are required to analyze a neighborhood of mixed controllers and 
behavior ones, better reflecting the real-world situation to understand 
the expected outcome. In general, this study shows that if designed 
properly, dynamic price can be an effective strategy for the wide 
implementation of demand response in district heating.
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